Residuals#
Objectives: what you will take away#
How-To Retrieve global and local residuals.
Prerequisites: before you begin#
You’ve successfully installed Howso Engine
You have an understanding of Howso’s basic workflow.
Data#
Our example dataset for this recipe is the well known Adult
dataset. It is accessible via the pmlb package installed earlier. We use the fetch_data()
function to retrieve the dataset in Step 1 below.
Concepts & Terminology#
How-To Guide#
Setup#
The user guide assumes you have created and setup a Trainee
as demonstrated in basic workflow.
The created Trainee
will be referenced as trainee
in the sections below.
[1]:
import pandas as pd
from pmlb import fetch_data
from howso.engine import Trainee
from howso.utilities import infer_feature_attributes
df = fetch_data('adult').sample(1_000)
features = infer_feature_attributes(df)
trainee = Trainee(features=features)
trainee.train(df)
trainee.analyze()
features.to_dataframe()
[1]:
type | decimal_places | bounds | data_type | original_type | ||||||
---|---|---|---|---|---|---|---|---|---|---|
min | max | allow_null | observed_min | observed_max | data_type | size | ||||
age | continuous | 0 | 0.0 | 137.0 | True | 17.0 | 90.0 | number | numeric | 8 |
workclass | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
fnlwgt | continuous | 0 | 0.0 | 1690576.0 | True | 19914.0 | 1033222.0 | number | numeric | 8 |
education | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
education-num | continuous | 0 | 0.0 | 25.0 | True | 2.0 | 16.0 | number | numeric | 8 |
marital-status | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
occupation | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
relationship | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
race | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
sex | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
capital-gain | continuous | 0 | 0.0 | 164870.0 | True | 0.0 | 99999.0 | number | numeric | 8 |
capital-loss | continuous | 0 | 0.0 | 4067.0 | True | 0.0 | 2467.0 | number | numeric | 8 |
hours-per-week | continuous | 0 | 0.0 | 162.0 | True | 2.0 | 99.0 | number | numeric | 8 |
native-country | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
target | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
Local Residuals#
Local metrics are retrieved through using Trainee.react()
.
Both Robust and non-robust (full) versions are available, although full
is recommended for residuals.
[2]:
# Get local full residuals
details = {'feature_full_residuals_for_case': True}
results = trainee.react(
df.iloc[[-1]],
context_features=features.get_names(without=["target"]),
action_features=["target"],
details=details
)
residuals = results['details']['feature_full_residuals_for_case']
residuals
[2]:
[{'marital-status': 0.39153374608872815,
'capital-loss': 0,
'race': 0.7684330847973726,
'age': 1,
'education': 0,
'sex': 0.22239574934740125,
'occupation': 0,
'target': 0,
'hours-per-week': 1,
'workclass': 0,
'education-num': 0,
'capital-gain': 0,
'relationship': 0.940742137873509,
'native-country': 0,
'fnlwgt': 8759}]
Global Residuals#
Howso has the ability to retrieve both local vs global metrics.
Global metrics are retrieved through using Trainee.react_aggregate()
. Both Robust and non-robust (full) versions are also available.
[3]:
# Get global full residuals
residuals = trainee.react_aggregate(
details={'feature_full_residuals': True},
).to_dataframe()
residuals
[3]:
marital-status | race | capital-loss | age | education | sex | occupation | target | hours-per-week | workclass | education-num | capital-gain | relationship | native-country | fnlwgt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
feature_full_residuals | 0.234694 | 0.218072 | 169.441442 | 8.201316 | 0.002603 | 0.258253 | 0.780693 | 0.213628 | 8.394683 | 0.32083 | 0.122694 | 2189.737683 | 0.334192 | 0.156547 | 80155.250407 |