Residuals#
Objectives: what you will take away#
How-To Retrieve global and local residuals.
Prerequisites: before you begin#
You’ve successfully installed Howso Engine
You have an understanding of Howso’s basic workflow.
Data#
Our example dataset for this recipe is the well known Adult
dataset. It is accessible via the pmlb package installed earlier. We use the fetch_data()
function to retrieve the dataset in Step 1 below.
Concepts & Terminology#
How-To Guide#
Setup#
The user guide assumes you have created and setup a Trainee
as demonstrated in basic workflow.
The created Trainee
will be referenced as trainee
in the sections below.
[1]:
import pandas as pd
from pmlb import fetch_data
from howso.engine import Trainee
from howso.utilities import infer_feature_attributes
df = fetch_data('adult').sample(1_000)
features = infer_feature_attributes(df)
trainee = Trainee(features=features)
trainee.train(df)
trainee.analyze()
features.to_dataframe()
[1]:
type | decimal_places | bounds | data_type | original_type | ||||||
---|---|---|---|---|---|---|---|---|---|---|
min | max | allow_null | observed_min | observed_max | data_type | size | ||||
age | continuous | 0 | 0.0 | 137.0 | True | 17.0 | 90.0 | number | numeric | 8 |
workclass | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
fnlwgt | continuous | 0 | 0.0 | 1322258.0 | True | 19302.0 | 809585.0 | number | numeric | 8 |
education | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
education-num | continuous | 0 | 0.0 | 26.0 | True | 1.0 | 16.0 | number | numeric | 8 |
marital-status | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
occupation | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
relationship | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
race | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
sex | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
capital-gain | continuous | 0 | 0.0 | 164870.0 | True | 0.0 | 99999.0 | number | numeric | 8 |
capital-loss | continuous | 0 | 0.0 | 4656.0 | True | 0.0 | 2824.0 | number | numeric | 8 |
hours-per-week | continuous | 0 | 0.0 | 163.0 | True | 1.0 | 99.0 | number | numeric | 8 |
native-country | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
target | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
Local Residuals#
Local metrics are retrieved through using Trainee.react()
.
Both Robust and non-robust (full) versions are available, although full
is recommended for residuals.
[2]:
# Get local full residuals
details = {'feature_full_residuals_for_case': True}
results = trainee.react(
df.iloc[[-1]],
context_features=features.get_names(without=["target"]),
action_features=["target"],
details=details
)
residuals = results['details']['feature_full_residuals_for_case']
residuals
[2]:
[{'workclass': 0.05552155884324439,
'relationship': 0.9488982970831705,
'capital-gain': 3132,
'marital-status': 0.894451821150195,
'age': 5,
'sex': 0,
'fnlwgt': 79346,
'capital-loss': 0,
'education-num': 0,
'education': 0,
'race': 0.9321238485895957,
'occupation': 0.7492518799140462,
'hours-per-week': 3,
'native-country': 0.1489881109797705,
'target': 0.06859635519050711}]
Global Residuals#
Howso has the ability to retrieve both local vs global metrics.
Global metrics are retrieved through using Trainee.react_aggregate()
. Both Robust and non-robust (full) versions are also available.
[3]:
# Get global full residuals
residuals = trainee.react_aggregate(
details={'feature_full_residuals': True},
)
residuals
[3]:
{'feature_full_residuals': {'workclass': 0.3781095646460791,
'relationship': 0.31080776857046544,
'capital-gain': 1480.634510546924,
'sex': 0.2370098757430592,
'marital-status': 0.2275392590599643,
'age': 8.813090014097074,
'fnlwgt': 80042.553611248,
'capital-loss': 164.72813042173732,
'race': 0.20188432692970415,
'occupation': 0.7788787488614444,
'hours-per-week': 8.241933687087792,
'education': 0.0010907657003103792,
'education-num': 0.24581046793439118,
'native-country': 0.135475182620448,
'target': 0.18480587347693922}}