Residuals#
Objectives: what you will take away#
How-To Retrieve global and local residuals.
Prerequisites: before you begin#
You’ve successfully installed Howso Engine
You have an understanding of Howso’s basic workflow.
Data#
Our example dataset for this recipe is the well known Adult dataset. It is accessible via the pmlb package installed earlier. We use the fetch_data() function to retrieve the dataset in Step 1 below.
Concepts & Terminology#
How-To Guide#
Setup#
The user guide assumes you have created and setup a Trainee as demonstrated in basic workflow.
The created Trainee will be referenced as trainee in the sections below.
[1]:
import pandas as pd
from pmlb import fetch_data
from howso.engine import Trainee
from howso.utilities import infer_feature_attributes
df = fetch_data('adult').sample(1_000)
features = infer_feature_attributes(df)
trainee = Trainee(features=features)
trainee.train(df)
trainee.analyze()
features.to_dataframe()
[1]:
| type | decimal_places | bounds | data_type | original_type | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| min | max | allow_null | observed_min | observed_max | data_type | size | ||||
| age | continuous | 0 | 0.0 | 119.0 | True | 17.0 | 79.0 | number | numeric | 8 |
| workclass | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| fnlwgt | continuous | 0 | 0.0 | 2239432.0 | True | 19914.0 | 1366120.0 | number | numeric | 8 |
| education | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| education-num | continuous | 0 | 0.0 | 26.0 | True | 1.0 | 16.0 | number | numeric | 8 |
| marital-status | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| occupation | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| relationship | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| race | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| sex | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| capital-gain | continuous | 0 | 0.0 | 164870.0 | True | 0.0 | 99999.0 | number | numeric | 8 |
| capital-loss | continuous | 0 | 0.0 | 6216.0 | True | 0.0 | 3770.0 | number | numeric | 8 |
| hours-per-week | continuous | 0 | 0.0 | 163.0 | True | 1.0 | 99.0 | number | numeric | 8 |
| native-country | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
| target | nominal | 0 | NaN | NaN | False | NaN | NaN | number | integer | 8 |
Local Residuals#
Local metrics are retrieved through using Trainee.react().
Both Robust and non-robust (full) versions are available, although full
is recommended for residuals.
[2]:
# Get local full residuals
details = {'feature_full_residuals_for_case': True}
results = trainee.react(
df.iloc[[-1]],
context_features=features.get_names(without=["target"]),
action_features=["target"],
details=details
)
residuals = results['details']['feature_full_residuals_for_case']
residuals
[2]:
[{'fnlwgt': 30324,
'marital-status': 0.727582594011288,
'capital-loss': 566,
'race': 0.16692977010082244,
'education': 0,
'sex': 0.3193828379058532,
'occupation': 0.5999374398939099,
'age': 9,
'hours-per-week': 6,
'workclass': 0.9156888891829328,
'education-num': 0,
'target': 0.22717539572686551,
'native-country': 0.05059014753752833,
'capital-gain': 0,
'relationship': 0}]
Global Residuals#
Howso has the ability to retrieve both local vs global metrics.
Global metrics are retrieved through using Trainee.react_aggregate(). Both Robust and non-robust (full) versions are also available.
[3]:
# Get global full residuals
residuals = trainee.react_aggregate(
details={'feature_full_residuals': True},
).to_dataframe()
residuals
[3]:
| fnlwgt | marital-status | race | capital-loss | education | sex | occupation | age | hours-per-week | workclass | education-num | target | native-country | relationship | capital-gain | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| feature_full_residuals | 81282.011063 | 0.201264 | 0.235182 | 157.543302 | 2.681189e-15 | 0.253443 | 0.772611 | 8.024614 | 7.931258 | 0.363803 | 0.275814 | 0.214848 | 0.165476 | 0.329922 | 996.356873 |