howso.client.typing#
Classes
Representation of a table of cases.  | 
|
Representation of a case distances result.  | 
|
Representation of an Evaluate result.  | 
|
Representation of a status output from AbstractHowsoClient.train.  | 
Attributes
Sequence of   | 
|
Valid values for   | 
|
Valid values for   | 
|
Valid values for   | 
|
Valid values for   | 
|
Valid values for   | 
|
Objects which can be interpreted as paths.  | 
|
Valid values for   | 
|
Valid values for   | 
|
Valid values for   | 
|
2-dimensional tabular data.  | 
|
3-dimensional tabular (i.e., time-series) data.  | 
|
Valid values for   | 
|
Threshold map(s) for auto-ablation and data reduction.  | 
- class howso.client.typing.Cases#
 Bases:
TypedDictRepresentation of a table of cases.
- 
cases: 
list[list[Any]]# Matrix of row and column values.
- 
features: 
list[str]# The feature column names.
- 
cases: 
 
- class howso.client.typing.Distances#
 Bases:
TypedDictRepresentation of a case distances result.
- 
case_indices: 
Sequence[tuple[str,int]]# The corresponding distances case indices.
- 
distances: 
DataFrame# The matrix of computed distances.
- 
case_indices: 
 
- class howso.client.typing.Evaluation#
 Bases:
TypedDictRepresentation of an Evaluate result.
- 
aggregated: 
Any# The aggregated evaluation output.
- 
evaluated: 
dict[str,list[Any]]# A mapping of feature names to lists of values.
- 
aggregated: 
 
- class howso.client.typing.TrainStatus#
 Bases:
TypedDictRepresentation of a status output from AbstractHowsoClient.train.
- 
needs_analyze: 
NotRequired[bool]# Indicates whether the Trainee needs an analyze.
- 
needs_data_reduction: 
NotRequired[bool]# Indicates whether the Trainee recommends a call to reduce_data.
- 
needs_analyze: 
 
- howso.client.typing.AblationThresholdMap#
 Threshold map(s) for auto-ablation and data reduction.
alias of
dict[Literal[‘accuracy’, ‘adjusted_smape’, ‘mcc’, ‘missing_value_accuracy’, ‘precision’, ‘r2’, ‘recall’, ‘rmse’, ‘smape’, ‘spearman_coeff’],dict[str,float]]
- howso.client.typing.CaseIndices#
 Sequence of
case_indicestuples.alias of
Sequence[tuple[str,int]]
- howso.client.typing.GenerateNewCases#
 Valid values for
generate_new_casesparameters.alias of
Literal[‘always’, ‘attempt’, ‘no’]
- howso.client.typing.LibraryType#
 Valid values for
library_typeparameters.alias of
Literal[‘st’, ‘mt’]
- howso.client.typing.Mode#
 Valid values for
modeparameters.alias of
Literal[‘robust’, ‘full’]
- howso.client.typing.NewCaseThreshold#
 Valid values for
new_case_thresholdparameters.alias of
Literal[‘max’, ‘min’, ‘most_similar’]
- howso.client.typing.NormalizeMethod#
 Valid values for
normalize_methodparameters.alias of
Literal[‘fractional_absolute’, ‘fractional’, ‘relative’]
- howso.client.typing.PathLike#
 Objects which can be interpreted as paths.
alias of
str|PathLike
- howso.client.typing.Persistence#
 Valid values for
persistenceparameters.alias of
Literal[‘allow’, ‘always’, ‘never’]
- howso.client.typing.Precision#
 Valid values for
precisionparameters.alias of
Literal[‘exact’, ‘similar’]
- howso.client.typing.SeriesIDTracking#
 Valid values for
series_id_trackingparameters.alias of
Literal[‘fixed’, ‘dynamic’, ‘no’]
- howso.client.typing.TabularData2D#
 2-dimensional tabular data.
alias of
DataFrame|list[list[Any]]
- howso.client.typing.TabularData3D#
 3-dimensional tabular (i.e., time-series) data.
alias of
list[DataFrame] |list[list[list[Any]]]
- howso.client.typing.TargetedModel#
 Valid values for
targeted_modelparameters.alias of
Literal[‘single_targeted’, ‘omni_targeted’, ‘targetless’]